Isolation and Identification of Xochitloldione and Isoxochitlolone from Cnidosculus urens

Xorge A. Dominguez, H. Sanchez V., Sergio Garcia
G., Griselda Espinosa B., Howard J. Williams, Claudio

Ortiz, A. Ian Scott, and Joseph H. Reibenspies
J. Nat. Prod., 1992, 55 (2), 221-224• DOI:
10.1021/np50080a011 • Publication Date (Web): 01 July 2004

Downloaded from http://pubs.acs.org on April 4, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/np50080a011 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

ISOLATION AND IDENTIFICATION OF XOCHITLOLDIONE AND ISOXOCHITLOLONE FROM CNIDOSCULUS URENS

Xorge A. Dominguez,* H. Sanchez V., Sergio Garcia G., Griselda Espinosa B.,
Departamento de Quimica, Instituto Tenologico y de Estudios Superiores de Monterrey, Sucursal de Correos "J," Monterrey, N.L. 64849, Mexito

Howard J. Wiliams,* Claudio Ortiz, A. Ian Scott, Center for Biological NMR, Department of Cbemistry, and Joseph H. Reibenspies Department of Cbemistry, Texas A\&M University, College Station, Texas 77843

Abstract

Major components of MeOH extracts from the plant roots of Cnidosculus urens purified by cc and tlc and crystallization were lupeol acetate and the previously unreported compounds isoxochitlolone [1] and xochitloldione [2], which were identified through mass, ir, nmr, and uv spectroscopy and X-ray crystallography. In preliminary testing, isoxochitlolone has been found to be active against Escherichia coli and Staphylococcus aureus.

Extracts of roots of Cnidosculus urens L. (Euphorbiaceae) are used in folk medicine by the Huasteca Indians of central eastern Mexico. Dried ground roots of C. urens were extracted first with hexane and then with MeOH . The more polar MeOH components were purified by partitioning between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$, and the organic soluble materials were separated chromatographically, giving lupeol acetate and the two previously unreported compounds isoxochitlolone [1] and xochitloldione [2], which were identified through nmr, uv, ir, mass spectral, and crystallographic data. The carbon skeleton of these compounds is identical to that of the recently reported compound xochitlolone [3], which was isolated from root extracts of the plant Jatropha multiloba (Euphorbiaceae) (1). Nmr and mass spectral data

2

3
of this compound is included for comparison. To our knowledge, these are the only reported natural compounds containing this carbon skeleton. Their biosynthetic origin is at present undetermined, but may include acetate and terpenoid precursors. Preliminary bioassays of the compounds indicate that isoxochitolone is active against Escherichia coli and Staphylococcus aureus.

EXPERIMENTAL

General experimental procedures.Mp's are uncorrected. Uv spectra were obtained on a Perkin-Elmer Lambda 3 instrument in MeOH with added reagents as indicated. Ir spectra were obtained on a Beckman model 4244 instrument using KBr pellets. Nmr spectra were obtained on a Bruker AM 500500 MHz Fourier transform instrument in $\mathrm{MeOH}-d_{4}$ solution. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{nmr}$ assignments were made through COSY, DEPT, and selective proton carbon decoupling experiments and by analogy to related compounds. Mass spectra were obtained on a VG Instruments VG-70 C instrument in ei mode ar 70 eV . X-ray crystallography was performed on a Nicolet R3/M diffractometer (oriented graphite monochromator; MoK $\alpha \lambda=0.71073 \AA$ radiation), and structures were solved by direct methods (2). Optical rotations were recorded on a Perkin-Elmer Model 141 polarimeter in ErOH.

Plant material.-Roots of C. urens were collected from the Huasteca region of Mexico on May 5, 1989. Voucher specimen 8390 has been placed in the herbarium at ITESM.

EXTRACTION AND PURIFICATION PROCE-DURES.-Dried milled roots (2100 g) were extracted in a Soxhlet apparatus, first with hexane for 7 days and then with MeOH for 7 days. Evaporation of the MeOH extract gave 34.5 g of a brownish residue which was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ (3:1). On evaporation, the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layer gave 19 g of brownish oil, which was flash chromarographed on Si gel using a hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ step gradient solvent system. Among the pure compounds obtained were 200 mg of lupeol acetate, which was identified by comparison of its chromatographic and spectral properties with those of an authentic sample, 13 mg of a yellow powder, mp 236°, given the name isoxochitlolone [1], and 30 mg of yellow needles, $\mathrm{mp} 227^{\circ}$, given the name xochitloldione [2].

Isoxachitlolone [1].-Compound 1: ms m / z (\%) 269 (51.3), $\left[\mathrm{M}^{+} 268\right.$ (100.0), [M-Me] 253 (26.8), 226 (26.2) $\left[\mathrm{M}-\mathrm{Me}_{2} \mathrm{C}\right]^{+} 225$ (49.4), 212 (12.0), $\left[\mathrm{M}-\mathrm{Me}-\mathrm{Me}_{2} \mathrm{C}\right]^{+} 211$ (16.4), 200 (15.0), 197 (25.0), 165 (15.1); ${ }^{13} \mathrm{C}$ nmr $\delta 200.6$ (s, C-6), 159.3 (s, C-2), 142.2 (s), 136.9 (s), 131.6 (d, C-4), 130.8 (d, C-10), 128.6 (d, C12), 128.0 (d, C-13), 127.1 (s), 123.8 (s), 117.1 (d, C-1), 45.4 (d, C-8), 44.4 (t, C-7), 41.6 (t, C14), 35.7 ($\mathrm{s}, \mathrm{C}-15$), 29.7 ($\mathrm{q}, \mathrm{Me}-3$), 22.5 ($\mathrm{q}, \mathrm{Me}-$ 15), 16.3 (q, Me-15); ${ }^{1} \mathrm{H}$ nmr 7.64 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4$), $6.62(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 6.26(1 \mathrm{H}, \mathrm{dd}, J=2.3,6.6$, $\mathrm{H}-12), 6.24(1 \mathrm{H}, \mathrm{d}, J=2.8, \mathrm{H}-10), 5.85(1 \mathrm{H}$, ddd, $J=2.6,5.6,6.6, \mathrm{H}-13), 2.81(1 \mathrm{H}, \mathrm{dd}$, $J=5.1,14.8, \mathrm{H}-7), 2.77(1 \mathrm{H}, \mathrm{d}, J=14.8, \mathrm{H}-$ 7), $2.39(1 \mathrm{H}, \mathrm{m}, J=2.3,2.8,5.1, \mathrm{H}-8), 2.18$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-3), 2.10(1 \mathrm{H}, \mathrm{dt}, J=2.6,17.5, \mathrm{H}-$ 14), 2.0 ($1 \mathrm{H}, \mathrm{dd}, J=5.6,17.5, \mathrm{H}-14$), 1.10
(3H, s, Me-15), 0.88 (3H, s, Me-15); ir (cm^{-1}) 3318, 3035, 2952, 2921, 1651, 1587, 1571, 1509, 1354, 1283, 1150, 1070, 985, 889, 730, 673,559 ; uv $(\mathrm{MeOH}) \lambda \max 360,275$ ($\mathrm{MeOH}+\mathrm{NaOme}$) 365, 300.

Xachitloldione [2].-Compound 2: $\mathrm{ms} m / z(\%)$ 283 (25.3), [M] ${ }^{+} 282$ (100), 267 (21.2), 239 (33.5), 211 (10.2), 200 (12.8), 187 (20.5), 186 (35.2), 96 (36.7), 43 (11.1); ${ }^{13} \mathrm{C}$ nmr $\delta 201.6$ (s, C-6), 189.2 (s, C-12), 162.2 (d, C-14), 161.3 (s, $\mathrm{C}-2), 138.8$ (d, C-10), 138.4 (s), 134.8 (s), 133.1 (d, C-4), 130.9 (s), 128.1 (s), 128.0 (d, C13), 121.7 (d, C-1), 46.0 (d, C-8), 43.7 (t, C-7), 38.2 (s, C-15), 27.4 (q, 3-Me), 24.0 (q, 15-Me), 15.9 (q, $15-\mathrm{Me}) ;{ }^{1} \mathrm{H} \mathrm{nmr} \delta 7.62(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4)$, $7.54(1 \mathrm{H}, \mathrm{d}, J=2.7, \mathrm{H}-10), 6.97(1 \mathrm{H}, \mathrm{d}$, $J=10, \mathrm{H}-14), 6.88(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 6.10(1 \mathrm{H}, \mathrm{d}$, $J=10, \mathrm{H}-13), 3.11(1 \mathrm{H}, \mathrm{t}, J=11.8, \mathrm{H}-7)$, $2.90(1 \mathrm{H}, \mathrm{dt}, J=11.8,2.5,2.7, \mathrm{H}-8), 2.85$ ($1 \mathrm{H}, \mathrm{dd}, J=11.8,2.5, \mathrm{H}-7$), 2.21 ($3 \mathrm{H}, \mathrm{s}, 3-$ $\mathrm{Me}), 1.31(3 \mathrm{H}, \mathrm{s}, 15-\mathrm{Me}), 1.00(3 \mathrm{H}, \mathrm{s}, 15-\mathrm{Me})$; ir 3246, 1658, 1652; uv (EtOH) 245, 284, 310, $355 ;[\alpha]_{23}(6.0 \mathrm{mg} / \mathrm{ml} \mathrm{EtOH}) 589\left(-193.8^{\circ}\right)$, $578\left(-211.2^{\circ}\right), 546\left(-264.2^{\circ}\right), 430\left(-753.3^{\circ}\right)$.

Xochitlolone [3].-Compound 3: ms m / z (\%) 269 (26.8), 268 (100.0) $\left[\mathrm{M}^{+} 254\right.$ (11.7), ${ }^{[\mathrm{M}-\mathrm{Me}]^{+}} 253(48.0), \mathrm{MM}_{\mathrm{M}} \mathrm{CO}^{+} 240(18.5)$, 225 (25.5), 172 (28.6), 171 (17.1), 158 (10.4), 157 (8.6), 128 (10.0); ${ }^{13} \mathrm{C} \mathrm{nmr} \delta 192.1$ (s, C12), 164.4 (d, C-14), 154.7 (s, C-2), 139.0 (d, $\mathrm{C}-10$), 137.4 (s), 136.5 (s), 133.2 (s), 132.1 (s), 132.1 (d, C-4), 127.7 (d, C-13), 127.5 (s), 120.6 (d, C-1), 53.5 (d, C-8), 39.1 (s, C-15), 34.0 (t, C-6), 29.3 (t, C-7), 28.1 ($\mathrm{q}, 3-\mathrm{Me}$), 22.2 ($\mathrm{q}, 15-\mathrm{Me}$), $16.0(\mathrm{q}, 15-\mathrm{Me}) ;{ }^{1} \mathrm{H} \mathrm{nmr} \delta 7.49$ $(1 \mathrm{H}, \mathrm{d}, J=2.4, \mathrm{H}-10), 6.93(1 \mathrm{H}, \mathrm{d}, J=10, \mathrm{H}-$ 14), $6.84(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 6.75(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 6.04$ $(1 \mathrm{H}, \mathrm{d}, J=10, \mathrm{H}-13), 2.92(1 \mathrm{H}, \mathrm{ddd}, J=2.4$, $5.7,12.1, \mathrm{H}-8), 2.82(1 \mathrm{H}, \mathrm{ddd}, J=1.3,7.2$, $-14.8, \mathrm{H}-6), 2.68(1 \mathrm{H}, \mathrm{dd}, J=9.9,-14.8, \mathrm{H}-$ $6), 2.32(1 \mathrm{H}, \mathrm{m}, J=1.3,5.7,9.9,-13.9, \mathrm{H}-$ 7), $2.16(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{Me}), 1.65(1 \mathrm{H}, \mathrm{m}, J=1,1.3$, $9.9,12.1,-13.9, \mathrm{H}-7), 1.25$ ($3 \mathrm{H}, \mathrm{s}, 15-\mathrm{Me}$), 0.93 (3H, s, $15-\mathrm{Me}$).

X-Ray crystallography. ${ }^{1}$-A light yellow crystal of $1[0.12 \mathrm{~mm} \times 0.30 \mathrm{~mm} \times 0.32$ mm] was mounted on a glass fiber with epoxy at room temperature (formula: $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2}$, formula weight $=268.3$ AMU). Cell parameters [Monoclinic, $P 2_{1}, a=8.334$ (2) $\AA, b=6.9411$ (15) \AA, $c=12.973(4) \AA, \beta=101.93(2)^{\circ}, \mathrm{V}=734.2$ (3)

[^0]$\AA^{3}, \quad D_{x}=1.214 \mathrm{~g} \cdot \mathrm{~cm}^{-3}, \mu=0.072 \mathrm{~mm}^{-1}$, $\left.\mathrm{Z}=2, \mathrm{~F}(000)=288 \mathrm{e}^{-}\right]$were calculated from the least-squares fitting of the setting angles for 25 reflections ($2 \theta_{\text {avg }}=19.6$). Data was collected for $4.0^{\circ} \leq 2 \theta \leq 50.0^{\circ}$ [Wyckoff scans, $-9 \leq b \leq 9$, $0 \leq k \leq 8,0 \leq l \leq 15]$ at $296^{\circ} \mathrm{K}$. Scan range for the data collection was 1.20° plus $\mathrm{K} \alpha$ separation, with a variable scan rate of 1.50 to $15.00 \% \mathrm{~min}$. Lorentz and polarization corrections applied to 1486 reflections. No absorption correction was applied. A total of 979 unique observed reflections ($\mathrm{R}_{\mathrm{int}}=0.03$), with $|\mathrm{I}| \leq 2.0 \sigma$ (I), were used in further calculations. The structure was solved by direct methods (2). Full-matrix leastsquares anisotropic refinement for all non-hydrogen atoms [number of least-squares parameters $=180$; quantity minimized $\Sigma w\left(F_{0}-F_{c}\right)^{2} ; \mathbf{w}=$ $\left.\sigma^{2} F+g F^{2}, g=0.0008\right]$ (3) yielded $R=0.053$, $w R=0.059$, and $S=1.36$ at convergence [largest $\Delta / \sigma=0.0017$; mean $\Delta / \sigma=0.0001$; largest positive peak in the final Fourier difference map $=$ $0.15 \mathrm{e}^{-} \AA^{3}$; largest negative peak in the final Fourier difference map $=-0.22 \mathrm{e}^{-} \AA^{3}$ \} (2). Hydrogen atoms were placed in idealized positions with isotropic thermal parameters fixed at 0.08 . Neutral atom scattering factors were taken from Cromer and Weber.

A light yellow needle of $2(0.20 \mathrm{~mm} \times 0.24$ $\mathrm{mm} \times 0.50 \mathrm{~mm}$) was mounted on a glass fiber
with vacuum grease at room temperature and cooled to $193^{\circ} \mathrm{K}$ in an N_{2} cold stream (formula: $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3}$, formula weight $=282.3 \mathrm{AMU}$). Cell parameters [triclinic, $P_{1}, a=6.000$ (2) \AA, $b=7.954$ (3) $\AA, c=8.371$ (3) $\AA, \alpha=102.812^{\circ}$, $\beta=101.21(2)^{\circ}, \gamma=106.24(3)^{\circ}, V=359.7(2)$ $\AA^{3}, \quad D_{\mathrm{x}}=1.303 \mathrm{~g} \cdot \mathrm{~cm}^{-3}, \mu=0.082 \mathrm{~mm}^{-1}$, $\left.Z=1, F(000)=150 e^{-}\right]$were calculated from the least-squares fitting of the setting angles for 25 reflections ($2 \theta_{\text {avg }}=24.2$). Data was collected for $4.0^{\circ} \leq 2 \theta \leq 50.0^{\circ}$ (Wyckoff scans, $-7 \leq h \leq 7$, $-9 \leq k \leq 9,-9 \leq l \leq 0$) at $193^{\circ} \mathrm{K}$. Scan range for the data collection was 2.00° plus K α separation, with a variable scan rate of 1.50 to 15.00° min. Lorentz and polarization corrections applied to 1362 reflections. No absorption correction was applied. The structure was solved by direct methods (2). A total of 1322 unique observed reflections ($\mathrm{R}_{\text {int }}=0.004$), with $|\mathrm{I}| \leq 1.5 \sigma(\mathrm{I})$, were used in further calculations. Full-matrix least-squares anisotropic refinement for all nonhydrogen atoms [number of least-squares parameters $=187$; quantity minimized $\Sigma w\left(F_{o}-F_{c}\right)^{2}$; $w=\sigma^{2} F+\quad \mathrm{gF}^{2}, \quad g=0.00101$ (3) yielded $\mathrm{R}=0.039$, $\mathrm{wR}=0.052$ and $\mathrm{S}=1.46$ at convergence (largest $\Delta / \sigma=0.0012$; mean $\Delta / \sigma=$ -0.0001 ; largest positive peak in the final Fourier difference map $=0.26 \mathrm{e}^{-} \AA^{3}$; largest negative peak in the final Fourier difference

coses)

Figure 1. Stereoviews of isoxochitlolone [1] (a) and xochitloldione [2] (b). Hydrogens are in idealized positions.
map $=-0.25 \mathrm{e}^{-} \AA^{3}$). Hydrogen atoms were placed in idealized positions with isotropic thermal parameters fixed at 0.08 (Figure 1). Neutral atom scattering factors were taken from Cromer and Weber (3).

ACKNOWLEDGMENTS

This research was funded by NIH grant GM32596-06 (AIS) and CONACYT grant P220CC088 1474 (XAD). Mass spectroscopy and X-ray crystallography instruments were purchased by NSF grants CHE-8705697 and CHE8513273 respectively.

LITERATURE CITED

1. X.A. Dominguez, H. Sanchez V., G. Espinoza B., A.M. Villarreal, and N.E. Guerra, Rew. Quim. Latin Amer., 21, 26 (1990).
2. G.M. Sheldrick, "SHELXTL-PLUS, Revision 3.4," Nicolet Instrument Corporation, Madison, Wisconsin, 1988.
3. D.T. Cromer and J.T. Weber, in: "International Tables for X-ray Crystallography, Vol. IV." Kynoch Press, Birmingham, 1974, pp. 55, 99.
Received 24 September 1990

[^0]: ${ }^{1}$ Atomic coordinates for 1 and 2 have been deposited with the Cambridge Crystallographic Dara Centre and can be obtained on request from Dr. Olga Kennard, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK.

